

18CS36

Third Semester B.E. Degree Examination, July/August 2021 Discrete Mathematical Structures

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Define the following with an example for each iii) Contradiction.
b. Establish the validity of the argùment:

$$
\begin{aligned}
& \mathrm{p} \rightarrow \mathrm{q} \\
& \mathrm{q} \rightarrow(\mathrm{r} \wedge \mathrm{~s}) \\
& \neg \mathrm{r} \vee(\neg \mathrm{t} \vee \mathrm{u}) \\
& \neg \mathrm{r} \vee(\neg \mathrm{t} \vee \mathrm{u}) \\
& \mathrm{p} \wedge \mathrm{t} \\
& \therefore \mathrm{U}
\end{aligned}
$$

i) Proposition
ii) Tautology (06 Marks)
c. Determine the truth value of the following statements if the universe comprises of all non zero integers:
i) $\quad \exists_{x} \exists_{y}[x y=2]$
ii) $\quad \exists_{x} \forall_{y}[x y=2]$
iii) $\quad \forall_{x} \exists_{y}[x y=2]$
iv) $\exists_{\mathrm{x}} \exists_{\mathrm{y}}[(3 \mathrm{x}+\mathrm{y}=8) \wedge(2 \mathrm{x}-\mathrm{y})=7]$
v) $\exists_{x} \exists_{y}[(4 x+2 y=3) \wedge(x-y=1)]$
(05 Marks)

2 a. Using truth table, prove that for any three propositions $\mathrm{p}, \mathrm{q}, \mathrm{r}[\mathrm{p} \rightarrow(\mathrm{q} \wedge \mathrm{r})] \Leftrightarrow[(\mathrm{p} \rightarrow \mathrm{q}) \wedge$ $(\mathrm{p} \rightarrow \mathrm{r})$].
(08 Marks)
b. Prove that for all integers ' k ' and ' l ', if k and l both odd, then $\mathrm{k}+l$ is even and $\mathrm{k} l$ is odd by direct proof.
(06 Marks)
c. If a proposition has truth value 1 , determine all truth values arguments for the primitive propositions $\mathrm{p}, \mathrm{r}, \mathrm{s}$ for which the truth value of the following compound proposition is 1 .
$[\mathrm{q} \rightarrow\{(\neg \mathrm{p} \vee \mathrm{r}) \wedge \neg \mathrm{s}\}] \wedge\{\neg \mathrm{s} \rightarrow(\neg \mathrm{r} \wedge \mathrm{q})\}$
(06 Marks)

3 a. Prove by mathematical induction for every positive integer 8 divides $5^{\mathrm{n}}+2 \cdot 3^{\mathrm{n}-1}+1$.
(06 Marks)
b. For the Fibonacci sequences $\mathrm{F}_{0}, \mathrm{~F}_{1}, \mathrm{~F}_{2} \ldots$. Prove that $\mathrm{F}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{\mathrm{n}}\right]$.
(06 Marks)
c. Find the coefficient of:
i) $\quad x^{9} y^{3}$ in the expansion of $(2 x-3 y)^{12}$
ii) x^{12} in the expansion $x^{3}(1-2 x)^{10}$
(08 Marks)

4 a. Prove that $4 n<\left(n^{2}-7\right)$ for all positive integers $n \geq 6$.
(06 Marks)
b. How many positive integers ' n ' can we form using the digits $3,4,4,5,5,6,7$ if we want ' n ' to exceed $5,000,000$.
(08 Marks)
c. Find the number of distinct terms in the expansion of $(w+x+y+z)^{12}$.
(06 Marks)
a. i) Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by
$f(x)=\left\{\begin{array}{cc}3 x-5, & \text { for } x>0 \\ -3 x+1, & \text { for } x \leq 0\end{array}\right.$
Determine: $\mathrm{f}\left(\frac{5}{3}\right), \mathrm{f}^{-1}(3), \mathrm{f}^{-1}([-5,5])$
(04 Marks)
ii) Prove that if 30 dictionaries contain a total of 61,327 pages, then at least one of the dictionary must have at least 2045 pages.
(02 Marks)
b. Prove that if $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \rightarrow \mathrm{C}$ are invertible functions then gof $: \mathrm{A} \rightarrow \mathrm{C}$ is an invertible function and $(\text { gof })^{-1}=f^{-1} \mathrm{og}^{-1}$.
(06 Marks)
c. Let $A=\{1,2,3,4,5\}$. Define a relation R on $A \times A$ by $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ if and only if $\mathrm{x}_{1}+\mathrm{y}_{1}=\mathrm{x}_{2}+\mathrm{y}_{2}$.
i) Determine whether R is in equivalence relation on $\mathrm{A} \times \mathrm{A}$.
ii) Determine equivalence classes $[(1,3)],[(2,4)]$.
(08 Marks)
6 a. Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\mathrm{B}=\{1,2,3,4,5,6\}$
i) How many functions are there from A to B? How many of these are one-to-one? How many are onto?
ii) How many functions are there from B to A? How many of these are one-to-one? How many are onto?
(06 Marks)
b. Let $\mathrm{A}=\{1,2,3,4,6,12\}$. On A define the relation R by aRb if and only if "a divides b ".
i) Prove that R is a partial order on A
ii) Draw the Hasse diagram
iii) Write down the matrix of relation.
(08 Marks)
c. Define partition of a set. Give one example Let $A=\{a, b, c, d, e\}$. Consider the partition $\mathrm{P}=\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}\{\mathrm{e}\}\}$ of A . Find the equivalent relation inducing this partition. (06 Marks)

7 a. Out of 30 students in a hostel; 15 study History, 8 study Economics and 6 study Geography. It is known that 3 students study all these subjects. Show that 7 or more students study none of these subjects.
(06 Marks)
b. Five teachers $T_{1}, T_{2}, T_{3}, T_{4}, T_{5}$ are to made class teachers for five classes $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$ one teacher for each class. T_{1} and T_{2} do not wish to become the class teachers for C_{1} or C_{2}, T_{3} and T_{4} for C_{4} or C_{5} and T_{5} for C_{3} or C_{4} or C_{5}. In how many ways can the teachers be assigned work without displeasing any teacher?
(08 Marks)
c. Solve the recurrence relation $a_{n}-6 a_{n-1}+9 a_{n-2}=0$ for $n \geq 2$.

8 a. Solve the recurrence relation $\mathrm{a}_{0}-3 \mathrm{a}_{\mathrm{n}-1}=5 \times 3^{\mathrm{n}}$ for $\mathrm{n} \geq 1$ given that $\mathrm{a}_{0}=2$.
(06 Marks)
b. Let a_{n} denote the number of n -letter sequences that can be formed using letters A, B and C , such that non terminal A has to be immediately followed by B. Find the recurrence relation for a_{n} and solve it.
(06 Marks)
c. Find the number of permutations of English letters which contain exactly two of the pattern car, dog, pun, byte.
(08 Marks)

9 a. Define a complement of a simple graph. Let G be a simple graph of order n . If the size of G is 56 and size of $\overline{\mathrm{G}}$ is 80 , what is n ?
b. Prove that is every graph, the number of vertices of odd degree is even.
 only if e is a part of some cycle in G.
(06 Marks)
10 a. Define graph isomorphism and isomorphic graphs. Determine whether the following graphs are isomorphic or not.
(06 Marks)

b. Prove that a tree with ' n ' vertices has $n-1$ edges.
c. Define optimal prefix code. Obtain the optimal prefix code for the string ROAD is GOOD. Indicate the code.
(08 Marks)

